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SUMMARY 
The boundary layer over a flat plate of semi-inf'mite extent in a stratified and rotating flow grows forward 
from the trailing edge, and is characterized by an intrinsic length scale L, which represents the distance from 
the trailing edge at which vortex stretching becomes just as important in the boundary layer as baroclinic 
vorticity production. Near the trailing edge, the layer is essentially the layer in a purely stratified flow; far 
upstream (many L), it is an Ekman layer. The boundary layer entrains no fluid, but induces at its edge a 
transverse velocity component which drives an higher-order streamwise outer flow. If the flow is bounded 
above and below by horizontal planes, the Wiener-Hopf solution for this outer flow indicates that the 
disturbance decays rapidly downstream, but the transverse velocity component is non-zero far upstream. 

1. Introduction 

The long forward-facing wake that occurs in front of  an obstacle in a slow stratified fluid flow 

has been studied for two decades, much of the early work having been done by Long (c.f. [10], 

for example), and has since been detailed in particular problems by Graebel [7], Janowitz [8], 

and Foster [6]. In particular, when the obstacle is a plate aligned with the flow, a forward- 

growing boundary layer occurs. The structure of  that boundary layer on a semi-infinite plate 

was given by Martin and Long [11] in 1968. Subsequently, Brown [3] gave the solution for the 

development of that boundary layer into an upstream wake for the case when the plate has 

finite length. Since then, very little has been done to extend these results to include effects of  

Coriolis force when the fluid is also rotating at an angular velocity, say, [2. Redekopp [13] has 

delineated the variety of  boundary layers that may occur on such a plate depending on the 

relative sizes of the Reynolds number, Froude number, and Rossby number. 

We consider here a semi-infinite plate lying in the plane y = 0, x < 0. The plate is in motion 

to the left, say, parallel to itself at speed U. The fluid in which the plate moves is taken to be 

incompressible and non-diffusive. We suppose that, where the fluid is undisturbed by the 

motion of the plate, its density is given by p = 1-/3y,/3 > 0. The motion occurs in a frame 

rotating at angular velocity I2, normal to the plate. If  - g V y  is the acceleration of  gravity and u 

the kinematic viscosity of the fluid, there are four dimensional quantities that characterize the 
motion in the boundary layer: I2, x , ~ ,  U, u. (We suppose that any horizontal boundaries are 

far enough away to leave the boundary layer itself unaffected to first order. We leave to Sec. 5 
what detailed restrictions this places on the parameter range in which this solution is valid.) 
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118 M. R. Foster 

~2/V~g-~ - is a measure of  the relative importance of  rotation to stratification. The only other 

parameter that arises naturally in the equations is 

~23 U 2 
e -  

v(at3) ~ 

which can be written as [U(U/I2)/v]xg24/(g~) 2 and hence is proportional to a Reynolds number  

based on an inertial length scale U/g2. In this work, we obtain the structure of  the flow for e -+ 

0. Since there is no plate length scale, an intrinsic scale 

L = vg[3 (1.2) 
~22U 

is the appropriate length. The parameter e, above, is the square of  the ratio of  the Ekman layer 

thickness and L. 

We find that the boundary layer grows forward from the trailing edge in a manner predicted 

by Martin and Long [11]. However, far upstream (several L), the boundary layer is an Ekman 

layer that carries no net mass in the streamwise direction. In fact, all along its length, the 
boundary layer entrains no fluid from the inviscid flow (see Redekopp [ 13] for a brief discussion 

of this feature), but a cross-stream velocity of  order U is induced at its edge by vortex stretch- 

ing. That non-zero lateral velocity is related to an O(eU) stream-wise flow, and satisfies a certain 
third order parabolic equation, whose solution is given by the Wiener-Hopf technique. 

The higher order outer flow decays rapidly in the downstream direction from the plate; 

however, in the upstream direction, we find that the O(U) transverse velocity component  does 
not go to zero. In fact, very far upstream, the transverse component  is found to vary linearly 

wi thy,  from - U  on the plate to zero on the horizontal planes. 

2. Formulation and outer expansion 

The semi-infinite plate mentioned in Sec. 1 is taken to occupy y = 0,% < 0 at t = 0; it is 
translating at speed U toward negative 5~. The fluid through which the plate is moving is, as 

mentioned previously, incompressible, non-diffusive, and stratified, and otherwise at rest; it is 
bounded above and below by planesy = HT and y = - H  n respectively. We choose a coordinate 

system translating with the plate, so x = 2' + Ut. In that frame the flow is steady. The Boussinesq 

equations of  motion are 

V "  u = 0, (2.1) 

(u  • ~ ' ) u  + 2£1  x u + V p  = v V  2 u - ogj ,  (2.2) 

u -  ~Tp = 0 ( 2 . 3 )  

where (u,v,w) are the components of u in the Cartesian directions (x,y,z).  The rotation vector is 
normal to the plate, the y-direction; in (2.2), j = Vy. The boundary conditions are 
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u = 0 on  y = 0,  x < 0,  ( 2 . 4 )  

u = V ( U x )  on y = H T and y = - H  B, (2.5) 

and, far from the plate where the fluid is undisturbed, 

u ~ V(Ux),  
(2.6) 

p ~  l - - ~ y , [ 3 > O .  

Equation (2.3) admits the solution, in terms of the stream function if, 

19 = l - 13t~/U (2.7) 

which is consistent with (2.6), but leaves aside, as usual in these problems (cf. Graebel [7], 

Janowitz [8], Foster [6]), the question of what function of ff is correct for p in regions of  

closed streamlines. The stream function in (2.7) is such that 

a~ a~ (2.8) U= -~y  , v -  aX " 

Let ff = UL~,  w = U~, and put p = 2~2Uz - gy +(v2(g~)a/~24Ua)'ff. Non-dimensionalizing all 

lengths by L, and using (2.7) and (2.8), (2.2) becomes 

e 2 g~ (g"  ~) ' f f+  2ej x (~ r -  i) + ~ p ' =  e z ~ z g + j ~ ,  (2.9) 

where i = ~7x. We note that the non-linear terms in (2.9) are apparently negligible only for 

g[3/g2 2 << 1. (2.10) 

Dropping the (~)  notation and neglecting the inertia, and supposing the flow is two-dimension- 

al so nothing depends on z, we have, for (2.9), 

2ej x (u - i) + V p  = e2V2u + ~j. (2.11) 

Elimination o f p  in (2.11) leads to the equations 

aft aw 
8x - 2e ~-y + e2V4¢,  (2.12) 

a¢  _ 1)  = eX72w. (2.13) 

In this paper, we seek solution to (2.12) and (2.13) for e -+ 0, subject to non-dimensional 
versions of (2.4)-(2.6). We suppose that the outer expansions for ff and w begin 
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=Y + ea~01 + 

W =  e b w 1  ar . . . 

(2.14) 

where a > 0 and b ~> 0; the first term in (2.14a) satisfies conditions (2.5) and (2.6a) as well as 
(2.13), but fails to satisfy no-slip, (2.4). Substitution of (2.14) into (2.12) and (2.13) gives 

b~l  = 2 e b + l - a  bW1 
bx by ' 

(2.15) 

a~l l eb+l-aV2Wl  
by 

Now, if b + 1 - a > 0, ffl = 0 is the solution of the limit forms of (2.15), which contradicts the 

assumed form of  (2.14). For b + 1 - a  < 0, (2.15)leads to w l = 0; so the only possibility is b + 1 

- a = 0. Then, (2.15) reduces to 

V2 bwl a2wl 
bx - 4  by 2 (2.16) 

The boundary condition for w~ on y = 0, x < 0, must be deduced by matching with the 

boundary layer of Sec. 3. We return, in Sec. 4, to the solution of (2.16). 

3. The boundary layer 

Writing ~O = e l / 2 o / a n d y  = ela~ and putting these into (2.12), (2.13), on letting e -+ 0, gives 

E 
a a4~.~ ax~ Lt 

b~" b~ "4 bx + 4 ~  = 4 (3.1) 

and 

ao2 ) a2w 
2 

Solution of (3.1) may be written as 

(3.2) 

= ~ +g(x) + ~P(x,~) (3.3) 

where ~b satisfies 

a4~ a~ 
+ 4(I) = 0, (3.4) a~ 4 ax 

and g(x), a result of the integration, is not yet known. Now aq,/a~- --> 0 for ~" -+ oo allows (3.3) to 

match to (2.14), to first order. I f  qb is exponentially small for ~" large, as we may verify 
a posteriori, then (3.2) may be integrated to give 
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w = 2 fo r (3.5) 

so that w = O(1) at the boundary-layer edge. So, matching w in (3.5) and (2.14), the outer 
expansion, requires that b = 0. Then, a = 1, and matching ~k with (3.3) and (2.14) requires g(x) 
--- O, i.e., there is no vertical velocity at the boundary-layer edge. This lack of entrainment for 
such boundary layers has previously been noted by both Barcilon and Pedlosky [2] and 
Redekopp [13]. 

Before proceeding to the solution, notice that much about the structure of this boundary 
layer is evident from (3.4). At large values of -x ,  the second term in (3.4) is negligible and we 
have the Ekman layer equation. For - x  small, the second term dominates the third, and we get 
a layer that grows like ( - x )  1/4 ; in fact, the solution there is exactly that given by Martin and 
Long [1 1]. So, the boundary layer determined by a balance between viscous diffusion and 
baroclinic vorticity production at small - x  undergoes a transition far upstream to an Ekman 
layer, where viscous diffusion balances vortex stretching. 

We write x = -~/4, and proceed to the solution of 

0~'4 + 4 - ~  + 4~ = 0, (3.6) 

with 

~(~,oo)=0, (3.7) 

and 

0q, 
dp(~,0) = 0, ~ (~,0) = -1 ,  (3.8) 

the last of which guarantees satisfaction of no-slip, (2.4). Solution is by Laplace transformation 
in ~, and is 

: 1_1__ ~ [ c + i ~  jp(s,f)eS~ds ' c > 0, (3.9) 
2hi J c - i  

where 

~b(s,~') = - 1 e_~-sin(7~.), 7 - (1 + s) 1/4. (3.10) 
3's 

The horizontal velocity, on taking a ~" derivative of (3.10) and inverting, is given by 

( r r )  e_¢_ e-___~_ ~ u : 1 +VC2sin ~"- ~ X/-in I(r/,~) (3.11) 

where r/is the similarity variable, Vt'2~'/~ '/4, and 

rs(4 (4+)j I07,~) = f o  ~ e -u in I e -nU'"  sin flu 1/4 du. (3.12) 
u +  ~ _ f 
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In addit ion,  the integral of  (3.10)  over ~" indicates,  f rom (3.5),  tha t  

w ~ - erf(x/~-), ~" ~ o~. (3 .13)  

The first two terms in (3 .11)  are due to a residue at s = 0 and cons t i tu te  the Ekman  Layer  

solut ion;  for ~ ~ oo, the final term is small and the layer  is an Ekman layer.  The te rm involving 

I(~,~) is the modi f ica t ion  of  the Ekman layer  due to the f low stra t i f icat ion.  We show, in Figure  

l ,  the solut ion (3.11)  p lo t t ed  versus the physical  variable ~ and also the s imilar i ty  variable,  r/, 

for various values of  ~. The results were obta ined  by S impson ' s  rule in tegra t ion  of  (3.12).  F o r  

= 0, our solut ion,  (3.11)-(3.12),  agrees with the numerical  results of  Martin and Long [11 ]. 

: i -" "- 

0 5  

Figure 1 (a). 
For - -  

3 iiit 

ll,/. 

O 0  0 5 1 0  

1 u 

Non-dimensional horizontal velocity in the boundary layer versus ~', for different values of/i.  
, ~ = .001; for-- ,  ~ =.01; for . . . .  , ~ = .1; for . . . . .  , ~ = l ; and  for - -  ,~ = 10. 
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A fiat plate in a rotating, stratified flow 123 

Asymptotic behavior 

We seek the approximate form of  (3.1 1) for large values of  r/. In e v a l u a t i n g / i n  (3 .12)  for 77 

oo, we note the c o m m e n t  of  Erdelyi [5] that the contribution of  a finite end-point is more 

important than the contribution near critical points.  The contribution near the lower limit of  

(3 .12 )  for r7 ~ oo is 

2ne-~'sin(~ " - 1r/4). 

No critical points o f  the part o f  (3 .12 )  wi th  the factor e x p ( - r / u  1/4) lie in I arg (u)  I < lr, so it 

makes no contribution in the steepest descent calculation. The second term, with the sine 

O5 

6 

rl 

I 
i 

5 

4 

/ 

i I 

ii/" 2 3 

O0 0 5  1 0  

1 u 

Figure l(b). Non-dimensional horizontal velocity in the boundary layer versus the similarity variable n = 
x/2~'/~ 1/4 for various values of ~. For - -  - -  -, ~ = .001, .01, .1 (They are indistinguishable on the 
graph.); for - - ,  ~ = 1; and for - - ;  ~ = 10. 

Journal of Engineering Math., Vol. 14 (1980) 117-132 



124 M. R. Foster 

function, has a critical point at u = (r~/4) 4~ e -i2n/3 , and the steepest descent method (Erdelyi 

[5]) leads to 

u ~ 1 + (1 - e -~) sin (~" - lr/4)e -~ 

2e-~ p(r/,~/~ )e-K n "'a + ~ (4/r/)z'3 
(4(~/r/) 4/a - 1/2) 2 + 3/4 

P(r/,? 0 = sin(Kr/4/a - 7r/12) + 4~ 4/3 sin(Kr/4/3 + 7rr/12), 

K=33/2/211/3, fo r r /~oo ,  (3.14) 

where we have allowed ~/~" to have any order whatever. For ~ - 0, we get 

u ~ 1 + ~ (4/r/)2/ae -Kn''3 sin(Kr/4/a - rr/12), (3.15) 

which is the asymptotic form of  the solution of  Martin and Long [11]. For ~ ~ oo, we obtain 

the large-r/modification to the Ekman layer solution, 

u ~ 1 + (1 - e-~)sin(~" - lr/4) + 1 e -~ e_Kn,,, sin(Kr/q/a + 7rr/12). (3.16) 

This result is valid for ~ >> ~" >> ~1/4, as ~ ~ oo. 

4. Higher order outer flow 

We now proceed to the solution of  (2.16). Matching the boundary-layer solution, (3.4), (3.9), 

and (3.10), to the expansion (2.14) with, as determined in Sec. 3, a --- I, b - 0, gives the 

boundary condition for w~, 

w~(x,O) = -  erf(2x/Z-x), x < 0 .  (4.1) 

Clearly, symmetry requires 

0wl 
0y (x ,0 )=0 ,  x > 0 .  (4.2) 

Also, (2.5) indicates that wl = 0 on y = +h r, and -ha,  where h r  = HT/L and hB = HB/L. For 

convenience, we write x = +(1/4) x*, y = (1/4) y*.  Then, (2.16) becomes 

0wl 02w~ 
V .2 - - -  (4.3) 

0x* 0y .2 ' 

subject to (4.1) and (4.2) in these variables, 

w , ( x * , 0 ) = - - e r f ( - - ~ ) ,  x * < 0 ,  (4.4) 
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and 

awl 
(x*,0) = O, x* > 0. (4.5) ay* 

We proceed using the Wiener-Hopf method (cf. Noble [12], Carrier, Krook, and Pearson [4], p. 

376ff) .  In order to guarantee convergent integrals, we must modify (4.4) to 

w*(x*,O) = - e  ~x*erf(  - ~ ) ,  x* < 0, (4.6) 

* As we shall see, the strip of  overlap and w* satisfies (4.3) and (4.5) as well. Then, w I = lim w 1 . 
5~0 

of  the 'plus' and 'minus' functions is of width 5. Writing 

W - w*(x*~v*)e -ikx *dx*, 
a o  

and transforming (4.3), we can easily obtain the solution for W, 

sinh(7(h ~. - y*) )  

C(k) sinh(Th ~.) ' y*  > 0, 

W = sinh(7(h$ +Y*)) 
(4.7) 

C(k) , y*  < 0, 
sinh(Th$) 

Branches are chosen such that - 3 2  < arg (k) < .n/2  and 3tr/2 < arg (k + i) < -rr/2. Transform- 

ing (4.6) and (4.2) gives 

k + i6 + A_ = C, (4.9) 

B - I -  ~ - -  

where 

6"7 sinh(7(h ~. + h~))  

sinh(Th ~,) sinh(Th ~)  ' 
(4.1 O) 

A_ -~ fo ~ w~(x*,O)e-ikX*dx *, 

f' r w: ] 8+ = _ .  I__ °y *  (x*,o) e-i'x*dx *. (4.11) 

A. is analytic in some lower half of the k-plane and B+ in some upper-half, which hopefully 
overlap. The first term in (4.9) should actually have the branchpoint at - (1 + 6)i; however, it 
turns out to be unnecessary to retain the 6 there, since we are interested in the limit solution 
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for ~ -+ 0. Eliminating C between (4.9) and (4.10) gives the equation to which the Wiener-Hopf 

technique is to be applied, 

i 1 / i  
-JB+ = A_ k + i~ V k  + i ' (4.12) 

where 

J =  
sinh(Th ~.) sinh(Th~) 

7 sinh(7(h ~. + h~)) 

For the (simpler) case where hT = hB, J simplifies to 

1 tanh (The.). (4.13) 

For shortness, we write h for h~. in what follows. 
The first task is to split J into the ratio J+/J_. That is easily done by treating log J and 

expressing the tanh as a ratio of the infinite products for the sinh and cosh. A little algebra and 

solution of a cubic equation leads to 

h ~ log ~(1 - k/ian)(1 + k/i/3n)(1 + k/i6n) 
logJ=log 5 + n=l ~-(1 -k/ ia 'n)(1 +k/i/3'n)(1 +k/ia'n) ~ (4.14) 

where 

cos(dPn/3) ' ~bn=COS_ 1 [ \ [ 3X/~ h ) 2 ~r 
a n -  x/3h 2 nrr ' 

2HTr 
/3n - cos((rr + ~bn)/3), (4.15) 

VTh 

2nTr 
~n - COS ((~" --  dPn) /3  ). ,ffh 

The formulae for (a'nfl'n, 6'n) are identical to (4.15) with n replaced by n- l~2 .  So long as 
n2/27h 2 > 1, all of these a,/3, and 6 values are real. Quite clearly from (4.14) then, 

n=, 1 --k//'~n ' (4.16) 

j + =  H I(o+k/i/3n) (l +k/i6n)leh/2. 
n= l + k/i/3'n) (1 + k/i6'n) 

(4.17) 

nTr 1 
Now an ~ --ff + -~ for n ~ ,~, and simple checks of(4.16) and (4.17) for large n indicate that 

the infinite products for J÷ and J. each meet the usual test for convergence of an infinite 
product (Jeffreys and Jeffreys [9], p. 52f). So, (4.12) is 

Journal of Engineering Math., Vol. 14 (1980) 117-132 



A flat plate in a rotating, stratified flow 127 

-J+B+ = A_J_- k + i-----6 J-" (4.18) 

The usual integral formula for the additive splitting of the final term in (4 .18) into  '+' and ' - '  

functions (cf. Carrier, Krook, and Pearson [4], p. 383) gives 

k + i6 J- = R+ - S_, (4.19) 

S.(k) = ~ Q~(8) 1 
Q=l aQ+ik x/l  +a~ (4.20) 

where 

Q~(8) ~- - -  1 f i  
,, o~ n=l 

nv~ 
Therefore 

(4.21) 

-J+B+ + R+ = A.J. + S_ = H(k) (4.22) 

where H must be analytic in I k [ < oo. 

We show in the Appendix that both the 'plus' and 'minus'  sides of (4.22) vanish for large 
[ k I, so that by the Liouville theorem, H -  0. Then 

S_ 
A _ - -  j_ (4.23) 

and 

S_ i V~" i 
C = -  j_ k +i8 +i (4.24) 

It is easily verified that this solution does indeed satisfy (4.4) and (4.5) if 8 -+ 0 after the 
inversion is performed, provided the inversion path lies in the strip - 8  < Ira(k) < O. 

By summing residues in the upper-half plane at ia~, one can show that the solution is 

w, ~ ~ a~" Q~ Qi e-4a~'x 
= cos((/" - 1/2)ny/h), x > 0, (4.25) 

i=1 ]:1 (O~i--O~.)N//I +Or i 

where Qi here is Qi(O) and Q) is given by a formula like (4.21) with all {ai} and {a~} inter- 
changed. 

The solution in x < 0 is technically complex to obtain, since it involves an integral along the 

cut from - i  to - /co as well as poles distributed on either side of that cut. Careful evaluation of 
all of  these contributions leads to the solution, 
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e 4x ~ e 4rx sin(4((1 +r)3/r)l/2(h - l Y  I)) dr 
= l l y l - 1  + fo Wi ~ h T - ~  vrf--Ol +r) sin(4((1 +r)3/r)l/2h) 

+ ~ [G(fl/) + G(S/)] sin(jzr l Y I/hT), x < 0, (4.26) 
j=l 

where the mark on the integral indicates the Cauchy principle value is to be taken and G is 
given by 

G(;~) = ( (~k --~1)3 ) 1/2 e*xx l ~, Q~ (4.27) 
J_(-i~) 3 / 2 - X  n=l x / l + a n ( a n + ~ , )  

We note from (4.26) that for x -~--0% w~ is given approximately by 

l Y I - h (4.28) 
w~ h 

so there is marked alteration of the upstream flow due to the boundary layer driving. However, 

downstream, (4.25) makes it clear that wx - 0 exponentially fast. Figure 2 shows w~ o n y  = 0 
plotted versus x. Notice that the velocity drops from zero (It vanishes like x ~/2 log x for x -+ 0 ÷, 
as shown in the Appendix.) to a peak value of - .1225 at x = .0088, and strongly decays after 
that. The calculation was made by truncating the series in (4.27) and the infinite products at 
750 terms. 

5. Final remarks 

One result of  the solution of  Sec. 4 is that the region of undisturbed flow is downstream of the 
plate, since Wl ~ 0 there. However, far upstream, noting (4.26), ~O~ ~ 0; in fact, by (2.15), ~b~ 
,-, 2x sgn(r,), so that the density above the plate, far upstream, is 1-~(v + 2ex). However, (2.7) 

~ 0 2  

~ 0 6  

--,10 

--.12 

--14 

× 

~5 .10 .lS .20 ,25 .30 ,35 .40 .45 

I I I I . ~ 2 ~ L ~ a ~ ,  
.50 

I 

Figure 2. The outer flow transverse velocity component, w~, downstream of the plate on y = 0. The peak 
value is - .  1225. 
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remains valid since all the streamlines in the flow eventually end up downstream, where u = i. 
These non-zero vertical velocities of order e on the plate and bounding planes are taken to zero 
by an order e 1/2 correction to the boundary layer solution of Sec. 3. 

The 'inertialess' restriction (2.10) may be removed with no alteration in the leading-order 
boundary-layer structure. The equation for the higher order outer-flow is modified, however. 

Equation (4.3) becomes 

V2 ~wl 02wl g~3 ~2Wl 
_ + (5 .1 )  

~x* ~y.2 4~22 ~x.2 

The solution may proceed along the lines of Sec. 4 by Wiener-Hopf technique, but things are a 

bit more complex. 
Finally, as noted in passing in Sec. I, we require that the boundary layer be thin compared 

to the distance between horizontal planes; a sufficient condition is E = v/D~tl~ << 1. We also 
require that the non-dimensional h T of Sec. 4 be 0(1).  Since HT/L = (e/E)l/2, we require E = 
O(e) to make this analysis valid. Put another way, the Rossby number, Ro = U/gZI-IT, must be 

quitesmall,  v i z . , R o = O  (-~2 E )  . 
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Appendix 

In order to complete the Wiener-Hopf procedure, we study the behavior of J_, A_, and S_, for 
I k I -~ o~. We proceed with these in sequence. 

H) J- for  I k[ -~oo 

We found J. to be given by (4.16), 

" n = 1 1 k/iottn 

The logarithm is 

l o g J =  ~, log . ,  . (A.2) 
n = l 1 k/ta n 

For a finite value of n in (A.2), I k I ~ oo gives a term of O(1/k). The large-n terms in the series 
(A.2) determine the large-k form of log J.. Thus, 
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logJ.~log]-+O(1/Ikl), I kl~oo* (A.3) 

where 

log]-= ~ log ( 1 - h k / i ( n - 1 / 2 ) l r )  
. : 1  i " 

We have used the asymptotic approximation for an 

convenience, we write 

]-' ih ~, 1 
I k l o ~ .  (A.5) 

7. 27r ,=1 (n +ihk/Tr) 2 ' 

This sum is easily identified with a sum in Abramowitz and Stegun ([1]), p. 259), related to the 

psi function, r ' ( z ) /F ( z ) .  The result is that the integral of (A.5) gives 

log] . ' - .7  P(ihk/rr)  + ~ ...-~ l o g k  +O( 1 / k ) .  (A.6) 

Therefore, by (A.6) and (A.3), 

(A.4) 

for n ~ co, viz., a n ,~ mr/h + 1/2. For 

J. ~ k 1/2 for l k l o o o .  (A.7) 

(ii) S_ for  [ k I -~ co 

From (4.20), 

S.(k)  = ~ an 1 
n=l an + i k  x / l  + a  n 

Since the infinite-product Qn converges for all values of n, we can write 

(A.8) 

I Qn I < ~ M < ° ° .  (A.9) 

In the region of the plane Im(k) < O, note that 

k+8 
I an + ik I = I an - Im(k) + iR~(k)  I >i [ an I 2 Ik l  ~-8 (A.10) 

for any 8 > 0. Then, bounding (A.8), 

M 
Is_ I <  - -  Y, ( a . ) - ' - 8 .  [ k 11/2+8 n=l 

(A.11) 

The sum exists for all 6 > 0, so I S_ I vanishes faster than I k 1-1/2 for I k I -* ~ in Im(k) < 0. 

(iii) A .  f o r  [ k I ~ co 

* This result may be obtained rigorously. 
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For x* and y*  small, the approximate version of  (4.3) is 

V2w * = 0 

which must satify 

2 ~ o n y * = O ,  x * < O ,  W 1 --  

Ow~ 
0y =0 ,  y * = 0 ,  x * > 0 .  

The solution to (A.12) and (A.13) is 

2 R£[(x* +iy*)  ~/2 l o g ( x * + i y * ) ] .  
WI* = 71.3/2 

Now, 

131 

(A.12) 

(A.13) 

(A.14) 

= ~J0 = w~(x*,O)e~kX*dx*. (a .15)  A_ 

For I k I ~ ~ with Ira(k) < 0, (A.15) indicates that the small x* behavior of  w I I y = 0 is 

important. From (A.14), 

, 2 0 ÷ w 1 ~ - ~  x *1/2 logx* for x*-+ o n y *  =0 ,  

so insertion into (A.15) gives 

1 
A_ 7r(ik)3/2 log k. (A. 16) 

Substitution of  (A.7), (A. 11), and (A. 16) into (4.22) for I k I-+ oo indicates clearly that H = 0. 

Similar arguments involving J÷, B+ and R+ give the same result, and are not given here for 

brevity. 
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